Langsung ke konten utama

Fiber Optik?

Assalamualaikum Wr Wb
Disini saya akan menjelaskan tentang Fiber Optik

A. Pengertian
  • Serat optik adalah saluran transmisi atau sejenis kabel yang terbuat dari kaca atau plastik yang sangat halus dan lebih kecil dari sehelai rambut, dan dapat digunakan untuk mentransmisikan sinyal cahaya dari suatu tempat ke tempat lain. Sumber cahaya yang digunakan biasanya adalah laser atau LED. Kabel ini berdiameter lebih kurang 120 mikrometer. Cahaya yang ada di dalam serat optik tidak keluar karena indeks bias dari kaca lebih besar daripada indeks bias dari udara, karena laser mempunyai spektrum yang sangat sempit. Kecepatan transmisi serat optik sangat tinggi sehingga sangat bagus digunakan sebagai saluran komunikasi.
B. Sejarah Fiber Optic
  • Penggunaan cahaya sebagai pembawa informasi sebenarnya sudah banyak digunakan sejak zaman dahulu, baru sekitar tahun 1930-an para ilmuwan Jerman mengawali eksperimen untuk mentransmisikan cahaya melalui bahan yang bernama serat optik. Percobaan ini juga masih tergolong cukup primitif karena hasil yang dicapai tidak bisa langsung dimanfaatkan, namun harus melalui perkembangan dan penyempurnaan lebih lanjut lagi. Perkembangan selanjutnya adalah ketika para ilmuawan Inggris pada tahun 1958 mengusulkan prototipe serat optik yang sampai sekarang dipakai yaitu yang terdiri atas gelas inti yang dibungkus oleh gelas lainnya. Sekitar awal tahun 1960-an perubahan fantastis terjadi di Asia yaitu ketika para ilmuwan Jepang berhasil membuat jenis serat optik yang mampu mentransmisikan gambar.
    Di lain pihak para ilmuwan selain mencoba untuk memandu cahaya melewati gelas (serat optik) namun juga mencoba untuk ”menjinakkan” cahaya. Kerja keras itupun berhasil ketika sekitar 1959 laser ditemukan. Laser beroperasi pada daerah frekuensi tampak sekitar 1014 Hertz-15 Hertz atau ratusan ribu kali frekuensi gelombang mikro.
    Pada awalnya peralatan penghasil sinar laser masih serba besar dan merepotkan. Selain tidak efisien, ia baru dapat berfungsi pada suhu sangat rendah. Laser juga belum terpancar lurus. Pada kondisi cahaya sangat cerah pun, pancarannya gampang meliuk-liuk mengikuti kepadatan atmosfer. Waktu itu, sebuah pancaran laser dalam jarak 1 km, bisa tiba di tujuan akhir pada banyak titik dengan simpangan jarak hingga hitungan meter.
    Sekitar tahun 60-an ditemukan serat optik yang kemurniannya sangat tinggi, kurang dari 1 bagian dalam sejuta. Dalam bahasa sehari-hari artinya serat yang sangat bening dan tidak menghantar listrik ini sedemikian murninya, sehingga konon, seandainya air laut itu semurni serat optik, dengan pencahayaan cukup mata normal akan dapat menonton lalu-lalangnya penghuni dasar Samudera Pasifik.
    Seperti halnya laser, serat optik pun harus melalui tahap-tahap pengembangan awal. Sebagaimana medium transmisi cahaya, ia sangat tidak efisien. Hingga tahun 1968 atau berselang dua tahun setelah serat optik pertama kali diramalkan akan menjadi pemandu cahaya, tingkat atenuasi (kehilangan)-nya masih 20 dB/km. Melalui pengembangan dalam teknologi material, serat optik mengalami pemurnian, dehidran dan lain-lain. Secara perlahan tetapi pasti atenuasinya mencapai tingkat di bawah 1 dB/km.
C. Generasi Fiber Optic
  • Berdasarkan penggunaannya maka SKSO dibagi atas beberapa generasi yaitu :

    Generasi pertama (mulai 1975)

    Sistem masih sederhana dan menjadi dasar bagi sistem generasi berikutnya, terdiri dari : alat encoding : mengubah input (misal suara) menjadi sinyal listrik transmitter : mengubah sinyal listrik menjadi sinyal gelombang, berupa LED dengan panjang gelombang 0,87 mm. serat silika : sebagai penghantar sinyal gelombang repeater : sebagai penguat gelombang yang melemah di perjalanan receiver : mengubah sinyal gelombang menjadi sinyal listrik, berupa fotodetektor alat decoding : mengubah sinyal listrik menjadi output (misal suara) Repeater bekerja melalui beberapa tahap, mula-mula ia mengubah sinyal gelombang yang sudah melemah menjadi sinyal listrik, kemudian diperkuat dan diubah kembali menjadi sinyal gelombang. Generasi pertama ini pada tahun 1978 dapat mencapai kapasitas transmisi sebesar 10 Gb.km/s.

    Generasi kedua (mulai 1981)

    Untuk mengurangi efek dispersi, ukuran teras serat diperkecil agar menjadi tipe mode tunggal. Indeks bias kulit dibuat sedekat-dekatnya dengan indeks bias teras. Dengan sendirinya transmitter juga diganti dengan diode laser, panjang gelombang yang dipancarkannya 1,3 mm. Dengan modifikasi ini generasi kedua mampu mencapai kapasitas transmisi 100 Gb.km/s, 10 kali lipat lebih besar daripada generasi pertama.

    Generasi ketiga (mulai 1982)

    Terjadi penyempurnaan pembuatan serat silika dan pembuatan chip diode laser berpanjang gelombang 1,55 mm. Kemurnian bahan silika ditingkatkan sehingga transparansinya dapat dibuat untuk panjang gelombang sekitar 1,2 mm sampai 1,6 mm. Penyempurnaan ini meningkatkan kapasitas transmisi menjadi beberapa ratus Gb.km/s.

    Generasi keempat (mulai 1984)

    Dimulainya riset dan pengembangan sistem koheren, modulasinya yang dipakai bukan modulasi intensitas melainkan modulasi frekuensi, sehingga sinyal yang sudah lemah intensitasnya masih dapat dideteksi. Maka jarak yang dapat ditempuh, juga kapasitas transmisinya, ikut membesar. Pada tahun 1984 kapasitasnya sudah dapat menyamai kapasitas sistem deteksi langsung. Sayang, generasi ini terhambat perkembangannya karena teknologi peranti sumber dan deteksi modulasi frekuensi masih jauh tertinggal. Tetapi tidak dapat disangkal bahwa sistem koheren ini punya potensi untuk maju pesat pada masa-masa yang akan datang.

    Generasi kelima (mulai 1989)

    Pada generasi ini dikembangkan suatu penguat optik yang menggantikan fungsi repeater pada generasi-generasi sebelumnya. Sebuah penguat optik terdiri dari sebuah diode laser InGaAsP (panjang gelombang 1,48 mm) dan sejumlah serat optik dengan doping erbium (Er) di terasnya. Pada saat serat ini disinari diode lasernya, atom-atom erbium di dalamnya akan tereksitasi dan membuat inversi populasi*, sehingga bila ada sinyal lemah masuk penguat dan lewat di dalam serat, atom-atom itu akan serentak mengadakan deeksitasi yang disebut emisi terangsang (stimulated emission) Einstein. Akibatnya sinyal yang sudah melemah akan diperkuat kembali oleh emisi ini dan diteruskan keluar penguat. Keunggulan penguat optik ini terhadap repeater adalah tidak terjadinya gangguan terhadap perjalanan sinyal gelombang, sinyal gelombang tidak perlu diubah jadi listrik dulu dan seterusnya seperti yang terjadi pada repeater. Dengan adanya penguat optik ini kapasitas transmisi melonjak hebat sekali. Pada awal pengembangannya hanya dicapai 400 Gb.km/s, tetapi setahun kemudian kapasitas transmisi sudah menembus harga 50 ribu Gb.km/s.

    Generasi keenam

    Pada tahun 1988 Linn F. Mollenauer memelopori sistem komunikasi soliton. Soliton adalah pulsa gelombang yang terdiri dari banyak komponen panjang gelombang. Komponen-komponennya memiliki panjang gelombang yang berbeda hanya sedikit, dan juga bervariasi dalam intensitasnya. Panjang soliton hanya 10-12 detik dan dapat dibagi menjadi beberapa komponen yang saling berdekatan, sehingga sinyal-sinyal yang berupa soliton merupakan informasi yang terdiri dari beberapa saluran sekaligus (wavelength division multiplexing). Eksperimen menunjukkan bahwa soliton minimal dapat membawa 5 saluran yang masing-masing membawa informasi dengan laju 5 Gb/s. Cacah saluran dapat dibuat menjadi dua kali lipat lebih banyak jika digunakan multiplexing polarisasi, karena setiap saluran memiliki dua polarisasi yang berbeda. Kapasitas transmisi yang telah diuji mencapai 35 ribu Gb.km/s.
    Cara kerja sistem soliton ini adalah efek Kerr, yaitu sinar-sinar yang panjang gelombangnya sama akan merambat dengan laju yang berbeda di dalam suatu bahan jika intensitasnya melebihi suatu harga batas. Efek ini kemudian digunakan untuk menetralisir efek dispersi, sehingga soliton tidak akan melebar pada waktu sampai di receiver. Hal ini sangat menguntungkan karena tingkat kesalahan yang ditimbulkannya amat kecil bahkan dapat diabaikan. Tampak bahwa penggabungan ciri beberapa generasi teknologi serat optik akan mampu menghasilkan suatu sistem komunikasi yang mendekati ideal, yaitu yang memiliki kapasitas transmisi yang sebesar-besarnya dengan tingkat kesalahan yang sekecil-kecilnya yang jelas, dunia komunikasi abad 21 mendatang tidak dapat dihindari lagi akan dirajai oleh teknologi serat optik.
D. Kelebihan Fiber Optic
  • Dalam penggunaan serat optik ini, terdapat beberapa keuntungan antara lain:
    • Lebar jalur besar dan kemampuan dalam membawa banyak data, dapat memuat kapasitas informasi yang sangat besar dengan kecepatan transmisi mencapai gigabit-per detik dan menghantarkan informasi jarak jauh tanpa pengulangan.
    • Biaya pemasangan dan pengoperasian yang rendah serta tingkat keamanan yang lebih tinggi.
    • Ukuran kecil dan ringan, sehingga hemat pemakaian ruang.
    • Imun, kekebalan terhadap gangguan elektromagnetik dan gangguan gelombang radio.
    • Non-Penghantar, tidak ada tenaga listrik dan percikan api.
    • Tidak berkarat.
E. Kabel Serat Optic
  • Secara garis besar kabel serat optik terdiri dari 2 bagian utama, yaitu cladding dan core . Cladding adalah selubung dari inti (core). Cladding mempunyai indek bias lebih rendah daripada core akan memantulkan kembali cahaya yang mengarah keluar dari core kembali kedalam core lagi.
    Dalam aplikasinya serat optik biasanya diselubungi oleh lapisan resin yang disebut dengan jacket, biasanya berbahan plastik. Lapisan ini dapat menambah kekuatan untuk kabel serat optik, walaupun tidak memberikan peningkatan terhadap sifat gelombang pandu optik pada kabel tersebut. Namun lapisan resin ini dapat menyerap cahaya dan mencegah kemungkinan terjadinya kebocoran cahaya yang keluar dari selubung inti. Serta hal ini dapat juga mengurangi cakap silang (cross talk) yang mungkin terjadi. 
  • Pembagian serat optik dapat dilihat dari 2 macam perbedaan :
    • 1. Berdasarkan mode yang dirambatkan:
      • Single mode : serat optik dengan inti (core) yang sangat kecil (biasanya sekitar 8,3 mikron), diameter intinya sangat sempit mendekati panjang gelombang sehingga cahaya yang masuk ke dalamnya tidak terpantul-pantul ke dinding selongsong (cladding). Bagian inti serat optik single-mode terbuat dari bahan kaca silika (SiO2) dengan sejumlah kecil kaca Germania (GeO2) untuk meningkatkan indeks biasnya. Untuk mendapatkan performa yang baik pada kabel ini, biasanya untuk ukuran selongsongnya adalah sekitar 15 kali dari ukuran inti (sekitar 125 mikron). Kabel untuk jenis ini paling mahal, tetapi memiliki pelemahan (kurang dari 0.35 dB per kilometer), sehingga memungkinkan kecepatan yang sangat tinggi dari jarak yang sangat jauh. Standar terbaru untuk kabel ini adalah ITU-T G.652D, dan G.657.
      • Multi mode  : serat optik dengan diameter core yang agak besar yang membuat laser di dalamnya akan terpantul-pantul di dinding cladding yang dapat menyebabkan berkurangnya bandwidth dari serat optik jenis ini.
    • 2. Berdasarkan indeks bias core:
      • Step indeks : pada serat optik step indeks, core memiliki indeks bias yang homogen.
      • Graded indeks : indeks bias core semakin mendekat ke arah cladding semakin kecil. Jadi pada graded indeks, pusat core memiliki nilai indeks bias yang paling besar. Serat graded indeks memungkinkan untuk membawa bandwidth yang lebih besar, karena pelebaran pulsa yang terjadi dapat diminimalkan.
F. Kode warna pada kabel serat optik
  • Dalam standarisasinya kode warna dari selubung luar (jacket) kabel serat optik jenis Patch Cord adalah sebagai berikut:
G. Konector
  • Pada kabel serat optik, sambungan ujung terminal atau disebut juga konektor, biasanya memiliki tipe standar seperti berikut:
     
    • FC (Fiber Connector): digunakan untuk kabel single mode dengan akurasi yang sangat tinggi dalam menghubungkan kabel dengan transmitter maupun receiver. Konektor ini menggunakan sistem drat ulir dengan posisi yang dapat diatur, sehingga ketika dipasangkan ke perangkat lain, akurasinya tidak akan mudah berubah.
    • SC (Subsciber Connector): digunakan untuk kabel single mode, dengan sistem dicabut-pasang. Konektor ini tidak terlalu mahal, simpel, dan dapat diatur secara manual serta akurasinya baik bila dipasangkan ke perangkat lain.
    • ST (Straight Tip): bentuknya seperti bayonet berkunci hampir mirip dengan konektor BNC. Sangat umum digunakan baik untuk kabel multi mode maupun single mode. Sangat mudah digunakan baik dipasang maupun dicabut.
    • Biconic: Salah satu konektor yang kali pertama muncul dalam komunikasi fiber optik. Saat ini sangat jarang digunakan.
    • D4: konektor ini hampir mirip dengan FC hanya berbeda ukurannya saja. Perbedaannya sekitar 2 mm pada bagian ferrule-nya.
    • SMA: konektor ini merupakan pendahulu dari konektor ST yang sama-sama menggunakan penutup dan pelindung. Namun seiring dengan berkembangnya ST konektor, maka konektor ini sudah tidak berkembang lagi penggunaannya.
    • E200
G. Referensi
  • https://id.wikipedia.org/wiki/Serat_optik 

Komentar

Postingan populer dari blog ini

Enkapsulasi dan Dekapsulasi

 Assalamualikum Wr.Wb Disini saya akan menjelaskan sedikit mengenai Enkapsulasi dan Dekapsulasi A.Pengertian Enkapsulasi adalah metode merancang protokol komunikasi modular di mana fungsi logis terpisah dalam jaringan disarikan dari struktur dasarnya oleh inklusi atau informasi yang tersembunyi di dalam objek tingkat yang lebih tinggi. Decapsulation adalah proses pembukaan data yang dienkapsulasi yang biasanya dikirim dalam bentuk paket melalui jaringan komunikasi. Ini dapat didefinisikan secara harfiah sebagai proses membuka kapsul, yang, dalam kasus ini, mengacu pada data yang dienkapsulasi atau dibungkus. B.Latar belakang Sebelum mengirim data,data terlebih dahulu dibungkus(dienkapsulasi).Dan setelah diterima,maka data akan dibuka(didekapsulasi) C.Maksud dan Tujuan Mempermudah pengiriman data yang terstruktur D.Hasil yang diharapkan Mengerti proses pengiriman dan penerimaan data E.Alat dan Bahan PC Internet F.Jangka waktu pelaksanaan 15 menit G.Tahap p

Jenis-Jenis Action Firewal Filter Rulesl di MikroTik

Assalamualikum Wr.Wb Disini saya akan menjelaskan tentang jenis-jenis action firewall filter rules di Mikrotik A.Pengertian Firewall adalah suatu sistem yang dirancang untuk mencegah akses yang tidak diinginkan dari atau ke dalam suatu jaringan internal. B.Jenis-jenisn Action Firewall Filter Rules Accept : paket diterima dan tidak melanjutkan membaca baris berikutnya Drop : menolak paket secara diam-diam (tidak mengirimkan pesan penolakan ICMP)  Reject : menolak paket dan mengirimkan pesan penolakan ICMP Jump : melompat ke chain lain yang ditentukan oleh nilai parameter jump-target Tarpit : menolak, tetapi tetap menjaga TCP connection yang masuk (membalas dengan SYN/ACK untuk paket TCP SYN yang masuk) Passthrough : mengabaikan rule ini dan menuju ke rule selanjutnya log : menambahkan informasi paket data ke log  C.Kesimpulan Banyak action yang ditwarkan oleh MikroTik.Penggunaan action sesuai kebutuhan dan keinginan D.Referensi https://mikrotikindo.blogspot.co.i

Perbedaan Simplex,Half-Duplex,Full-Duplex

Assalamualaikum Wr.Wb Disini saya akan menjelaskan sedikit perbedaan Simplex,Half-Duplex,Full Duplex Simplex Simplex, juga disebut searah, adalah, satu satu arah transmisi. Sebuah contoh dari transmisi simplex adalah sinyal yang dikirimkan dari sebuah stasiun TV ke TV rumah Anda. Half-Duplex Ketika data mengalir dalam satu arah pada satu waktu, ini dikenal sebagai half-duplex. Dengan half-duplex, saluran komunikasi memungkinkan bolak transmisi dalam dua arah, tapi tidak di kedua arah secara bersamaan. Radio dua arah, seperti polisi atau komunikasi darurat radio mobile, bekerja dengan setengah-duplex transmisi. Ketika Anda menekan tombol pada mikrofon untuk mengirimkan, Anda tidak bisa mendengar orang di ujung lainnya. Jika orang di kedua ujungnya mencoba berbicara pada saat yang sama, transmisi tidak akan melalui. Full-Duplex Ketika data mengalir dalam dua arah pada saat yang sama, diketahui sebagai full-duplex. Meskipun data mengalir dalam dua arah, bandwidth diu